Field modeling for partially coherent X-ray imaging system

Antonie D. Verhoeven1 // Christian Hellmann2 // Mourad Idir3 // Frank Wyrowski2 // Jari Turunen1

1Institute of Photonics, University of Eastern Finland, 80101 Joensuu, Finland
2Institute of Applied Physics, Friedrich-Schiller University, D-07745 Jena, Germany
3Photons Science Division, Brookhaven National Laboratory-NSL II, 11973-5000 New York, USA

Introduction

The statistical properties of a synchrotron source is described by the cross-spectral density function as a superposition of mutually uncorrelated, spatially localized modes (Fig. 1). This description is applied to model the propagation of spatially partially coherent light beams in an X-ray imaging system (Fig. 2) with non-ideal grazing-incidence mirrors (Fig. 3).

Fig. 1: Gaussian Shell Model source [1], \(\lambda = 173 \text{ pm} \).

Fig. 2: X-ray gold coated grazing mirrors, \(\theta = 3 \text{ mrad} \).

Fig. 3: Mirror’s figure errors.

Setup

Computation

Table 1: Operators used; *requires smooth wave front.

Results

Fig. 5: a) Focal spot without figure errors, b) cross-section of elementary modes.

Fig. 6: a) Focal spot with figure errors, b) cross-section of elementary modes.