Single-walled carbon nanotubes have unique optical properties as a result of their one-dimensional structure. Not only do they exhibit strong polarization for both absorption and emission, large exciton binding energies allow for room-temperature excitonic luminescence. Furthermore, their emission is in the telecom-wavelengths and they can be directly synthesized on silicon substrates, providing new opportunities for nanoscale integrated photonics.

Here we discuss the use of individual single-walled carbon nanotubes for optical devices that could be integrated in silicon photonics. Their light emission properties can be controlled by coupling to silicon photonic structures such as photonic crystal microcavities [1,2] and microdisk resonators [3]. With the strong absorption polarization at the nanoscale, they allow for unconventional polarization conversion that results in giant circular dichroism [4]. More recently, we have found that excitons can dissociate spontaneously [5], enabling photodetection at low bias voltages. Ultimately, it should be possible to combine these results to achieve generation, manipulation, and detection of photons on a chip.

Work supported by SCOPE, KAKENHI, The Canon Foundation, The Asahi Glass Foundation, KDDI Foundation, and the Photon Frontier Network Program of MEXT, Japan. The devices were fabricated at the Center for Nano Lithography & Analysis at The University of Tokyo.