Contents

- Monsu
 - Background
 - Structure
 - Tools
 - Examples
Background

Monsu = Forest planning system for multi-functional forestry

Uses

- Education: Several methods included
- Research: New methods and models
- Planning: Easy enough to use, visual
Structure

- Database manager
- Present state calculator
- Simulator
- Optimization tools
- Visualisation tools
Planning with Monsu

Decision maker

Preferences

Objectives and constraints

Forest ecosystem

Inventory data

Information about alternatives

Models

Comparisons

Decision

Simulation tool

Optimization tools

Vizualization tools
What is simulated

- **Initial stand**
 - stand-level data, tree-level growth models
 - diameter distribution predicted
 - calibrated using GP

- **Stand development**
 - regeneration
 - growth
 - mortality

- **Treatments**
 - cuttings, growing stock treatments
 - site treatment

- **BA** = 25
 - **Dmean** = 25
 - ...
Even vs. Uneven-aged management

Continuous cover forestry (CCF) is currently a global megatrend

In Monsu, the user can select

- CCF nowhere
- CCF in specified stands
- Only CCF in every stand
- Both CCF and RF in every stand
 - Optimization selects either CCF or RF for each stand
What is calculated in simulation

- Stand development
 - Volume etc.
 - Biomass
 - Mortality
 - Litter yields
 - Removals
 - Residues
 - Incomes
 - Costs

- Multiple-use things
 - Berry yields
 - Recreation scores
 - Scenic scores

- Habitat suitability indices
 - For > 40 species

- Risk indices
 - Vulnerability to wind damage
Four (!) parallel simulators

1. **Living biomass (= trees)**
 - Initialized with inventory data & models

2. **Dead (soil) organic matter (for CO2 balance)**
 - Initialized with models
 - Inputs: dead trees, harvest residues, litter
 - Decomposition simulated with Yasso07 model

3. **Products (for CO2 balance)**
 - Initialized with models
 - Inputs: harvested trees
 - Divided into end product categories
 - Decomposition simulated with product decay models

4. **Dead tree simulator (for ecological indices, HSIs)**
 - Initialized with models
Alternative schedules for a stand
Optimization tools

- Linear programming
 - LP & GP formulations
 - Lindo used as a solver

- Heuristic methods
 - Simulated annealing
 - Tabu search
 - Genetic algorithm
 - Great deluge
 - Threshold accepting

- Decentralized methods
 - Cellular automata
 - Spatial version of the reduced costs method (Hoganson & Rose)
Spatial optimization

- Adjacency information required (from text file)
- Aggregate treatments or features
- Form dynamic treatment units

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>220</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>130</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>230</td>
</tr>
</tbody>
</table>
Visualization tool 1: Line graphics
2: VRML
3: Google Earth
Carbon balance example

- Low-thinning RF
- High-thinning RF
- CCF
- Any-aged management
Carbon balance map
Ecological spatial planning example

Dark: High HSI for flying squirrel
Siberian jay example

Maintain habitats IN THE SAME PLACE (red = BAD, green = GOOD)
Solution: Maximize location-weighted mean HSI of jay in 2042

Harvest equals growth
Cutting aggregation (SA, CA, RC)
Dynamic treatment units (right)
Wind risk example

- White: Mean tree height = 0 m
- Black: Mean tree height = 30 m

Initial

After 30 years
Maximize risk

After 30 years
Minimize risk
One easy question would be welcome